
0
Copyright Ronald W. Ritchey 2009, All Rights Reserved

SWE 781
Secure Software Design and Programming
Introduction
Lecture 1

Ron Ritchey, Ph.D.
Chief Scientist

703/377.6704
Ritchey_ronald@bah.com

Copyright Ronald W. Ritchey 2009, All Rights Reserved
1

Introduction

  This course will discuss how to engineer secure software. The
approach taken will be to highlight common security pitfalls
that application developers frequently fall into so that these
mistakes may be avoided in the future. We will also introduce
modern topics in computer security that shall prepare students
to do research in computer security

  The course will be somewhat Unix specific.
•  Unix provides a good platform for demonstrating

many secure programming problems.
•  Both the operating system and the tools

required for program development
are freely available

Copyright Ronald W. Ritchey 2008, All Rights Reserved
2

Agenda

  Syllabus
  Grading
  Discussion of information security
  Overview of information security terms

•  The CIA triangle
•  AAA

  Overview of the Unix security model

Copyright Ronald W. Ritchey 2008, All Rights Reserved
3

Reading List

Primary Texts
  Brian Chess and Jacob West, Secure Programming with Static Analysis
  D. Wheeler, Secure Programming for Linux and Unix HOWTO

Secondary Materials
  Goertzel et al, Software Security Assurance State of the Art Report, May 2007
  Aleph One, Smashing the Stack for Fun and Profit. Phrack Vol 7, Nr. 49
  Tim Newsham, Format String Attacks, Guardent tech report, Sept 2000
  Bugtraq - http://www.securityfocus.com/archive/1
  Phrack - http://www.phrack.org/
  Other materials may be identified as class progresses

Copyright Ronald W. Ritchey 2008, All Rights Reserved
4

Schedule (tentative)
Date Subject

Sep 1st Introduction (today) ; Chess/West chapter 1, Wheeler chapters 1,2,3

Sep 8th Computer attack overview

Sep 15th Input Validation; Chess/West chapter 5, Wheeler chapter 5

Sep 22nd Buffer Overflows; Chess/West chapters 6, 7; Wheeler chapter 6

Sep 29th Error Handling; Chess/West chapter 8; Wheeler chapter 9 (9.1, 9.2, 9.3 only)

Oct 6th Privacy, Secrets, and Cryptography; Chess/West chapter 11; Wheeler chapter 11 (11.3, 11.4,
11.5 only)

Oct 13th Columbus Recess

Oct 20th Mid-Term exam

Oct 27th Mid Term Review / Major Assignment Introduction

Nov 3rd Implementing authentication and access control

Nov 10th Web Application Vulnerabilities; Chess/West chapter 9,10

Nov 17th Secure programming best practices / Major Assignment Stage Check ; Chess/West chapter
12; Wheeler chapters 7,8,9,10

Nov 24th Static Code Analysis & Runtime Analysis

Dec 1st The State of the Art (guest lecturer)

Dec 8th TBD (Virtual Machines, Usability [phishing], E-Voting, Privilege Separation, Java Security,
Network Security & Worms)

Copyright Ronald W. Ritchey 2008, All Rights Reserved
5

Grading

  Minor assignments (20%)
•  At least four will be assigned
•  The first is a one page review of an application vulnerability from

bugtraq.
  Mid Term Exam (30%)
  Major assignment / Final (50%)

Warning
•  Widely-deployed vulnerabilities may be discuss and this is in no way

intended as an invitation to go and exploit these vulnerabilities. You
are to behave responsibly, but it is important that we candidly discuss
real-world experience.

•  You must abide by the University’s computer usage policy

Copyright Ronald W. Ritchey 2008, All Rights Reserved
6

1st minor assignment
  Task: Explore examples of insecure code using

NIST's SAMATE database
  Detail

•  The NIST SAMATE project is collecting examples of vulnerable code. It is
designed to be used to "provide users, researchers, and software security
assurance tool developers with a set of known security flaws [1]". Your
assignment is to browse through this collection, choose one of the code
examples, determine why it is vulnerable and what could be done to produce a
secure equivalent. You will be required to write up your findings in a one to two
page report. Please make sure that you clearly identify which code example you
have chosen, explain the vulnerability and your approach to solving it. If the
code example is small enough, please include it as an attachment to your
report. As in the real world, good grammar and spelling is required!

•  This is an individual assignment. No group work is allowed.
•  This assignment, as with all assignments in this class must be performed in

STRICT COMPLIANCE to the honor code!
 [1] NIST SAMATE Reference Dataset Project, http://samate.nist.gov/SRD/.

  Due Date: Sept 8th

Copyright Ronald W. Ritchey 2008, All Rights Reserved
7

Agenda

  Syllabus
  Grading
  Discussion of information security
  Overview of information security terms

•  The CIA triangle
•  AAA

  Overview of the Unix security model

Copyright Ronald W. Ritchey 2008, All Rights Reserved
8

Why do we need secure programs?

Copyright Ronald W. Ritchey 2008, All Rights Reserved
9

Annual cost of computer crime *

  $67 Billion
  Sixty-four percent of respondents (primarily large corporations and

government agencies) detected computer security breaches within the
last twelve months.

  $24,000 was the average cost per company with total reaching $32M
  Worms, Viruses and Trojan horses were the most costly, followed by

computer theft, financial fraud and network intrusions
•  $12M to virus-type incidents
•  $3.2 M to theft
•  $2.8M to financial fraud
•  $2.7M to network intrusions

 * 2005 FBI Computer Crime Survey

Copyright Ronald W. Ritchey 2008, All Rights Reserved
10

Should you trust your users?

  Who are your users?
  How do you know?
  How do you prevent unauthorized users from accessing your

application?
  Can your application support unexpected input gracefully?
  We frequently make assumptions about how

our users will use our applications.
•  How often do we succeed?

Copyright Ronald W. Ritchey 2008, All Rights Reserved
11

Why is secure software hard?

  Most of the focus during a development project is on
functionality not security

  Developers not good at thinking of other ways their software
may be used (or abused)

  Software has bugs!
•  A friendly user stumbles on bugs when presenting input the

developers did not consider/test for
•  A malicious user seeks out bugs and attempts to exploit them

  Software programmers not sufficiently paranoid
•  Do not consider the malicious user

Copyright Ronald W. Ritchey 2008, All Rights Reserved
12

Too much focus on security late lifecycle
results in bolted-on, incomplete solutions

Plan Build Test Field

Firewalls
Intrusion Detection Systems
Penetration Testing

Plan Build Test Field

Security Requirements
Architecture Risk Assessment
Static Code Analysis
Formal analysis

Focus purely on
functionality
guarantees
insecure systems

Designing security in
from the beginning
gives us a chance at
long-term security

Copyright Ronald W. Ritchey 2008, All Rights Reserved
13

Seven Pernicious Kingdoms *

  Input Validation and Representation
  API Abuse
  Security Features
  Time and State
  Error Handling
  Code Quality
  Encapsulation
  CWE/SANS TOP 25 Most Dangerous Programming Errors

•  http://www.sans,org/top25errors/

* From Tsipenyuk, Chess, Mcgraw, “Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors”. Proceedings SSATTM, 2005

Copyright Ronald W. Ritchey 2008, All Rights Reserved
14

Ok, why you should care!

Copyright Ronald W. Ritchey 2008, All Rights Reserved
15

Agenda

  Syllabus
  Grading
  Discussion of information security
  Overview of information security terms

•  The CIA triangle
•  AAA

  Overview of the Unix security model

Copyright Ronald W. Ritchey 2008, All Rights Reserved
16

Diagram of a Program

Program
Process Data

(Structured Program
Internals)

Input Output

Call-out to
other programs

Copyright Ronald W. Ritchey 2008, All Rights Reserved
17

Information Security Properties

  Information Security is frequently broken down into three main
categories
•  Integrity

-  Must be accurate and complete
•  Confidentiality

-  Must only be revealed to authorized users
•  Availability

-  Must be reliably available when needed

  The programs your write should maintain these properties as
appropriate for functionality

Copyright Ronald W. Ritchey 2008, All Rights Reserved
18

Integrity

  It is essential to the operation of a information system that the
information is not damaged, destroyed or falsified
•  System Failures

-  Should allow graceful recovery to a known stable state
•  Modification

-  Should only be allowed by trusted processes / users
•  Consistency

-  Should be maintained between the information
system and the realities of the outside world

Copyright Ronald W. Ritchey 2008, All Rights Reserved
19

Confidentiality and Availability

  Many types of information should not be accessible to
unauthorized individuals
•  Logical access controls can be used to protect the information from

unauthorized release
•  Encryption can be used to protect against eavesdropping and capture

  Information must be available on a timely basis
  Controls are application and system

dependent

Copyright Ronald W. Ritchey 2008, All Rights Reserved
20

Authentication, Authorization, and Auditing
(AAA)

  Authentication
•  Proving identity

  Authorization
•  Granting access to resources based upon identity
•  Based upon User, User Group, Resource,

and Resource Group
  Auditing

•  Recording the normal and abnormal
operation of the system

Copyright Ronald W. Ritchey 2008, All Rights Reserved
21

Authentication

  Asks the question, who are you?
  Critical for integrity and confidentiality
  You can use three types of data when attempting

authentication
•  Something the user knows
•  Something the user has
•  Something the user is

  Most popular type is Username / Password
•  Type: Something the user knows
•  Default ability on most modern

operating systems
  Is there anything wrong with

password based authentication?

Copyright Ronald W. Ritchey 2008, All Rights Reserved
22

Passwords = weak authentication

  Do users create good passwords? Why not?
•  Too short
•  Based upon user’s environment (family, car, sports teams, etc.)
•  Based upon words found in dictionaries
•  Tend to contain only letters and numbers
•  Think that trivial substitutions make better passwords

-  Ralph becomes Ralph1, School becomes Sch00l

  Are system generated passwords better?
•  If passwords are too hard to remember, what will users do?
•  How many passwords do you have to remember?

  Passwords can be eavesdropped
•  Shoulder surfing
•  Networking sniffing

Copyright Ronald W. Ritchey 2008, All Rights Reserved
23

Password quality criteria

  Length
•  Longer the better

-  Less than 7 characters can be brute forced in < 24 hours

  Complexity
•  Using more than two character types (letters, numbers, symbols) e.g.

3yaq!tun
  Not dictionary based

•  The password does not appear in a dictionary
and is not a trivial substitution of a
dictionary term

Copyright Ronald W. Ritchey 2008, All Rights Reserved
24

Password guessing methods

  Brute Force
•  Attempts to break the password by attempting every possible

character combination
•  Made difficult by length, complexity

  Dictionary Attack
•  Uses a password dictionary to guess passwords
•  Sophisticated dictionary based password crackers will create guess

for permuted terms
•  Thousands of dictionaries available on the web

-  English, German, French, Swedish, etc.
-  Biology, chemistry, Shakespeare
-  Star Trek, The Matrix, sexual terms

•  Made difficult by complexity,
non-dictionary based passwords

Copyright Ronald W. Ritchey 2008, All Rights Reserved
25

What’s better than passwords?

Basically everything but here are some specifics

  One-time passwords
  Shared secret
  Public Key
  Tokens and Smart cards

Copyright Ronald W. Ritchey 2008, All Rights Reserved
26

One-time passwords

  Issue the user a bunch of passwords, then only accept each
one once.

  Eliminates the problem of shoulder surfing and network
eavesdropping but, …

  Introduces the problem of distributing the password lists
  If the list is compromised the user can still

be impersonated
  Users hate one-time passwords

Copyright Ronald W. Ritchey 2008, All Rights Reserved
27

Shared Secret

  User and server have a shared secret
  To authenticate

•  Server generates a random number and sends it to the client.
•  Client encrypts the number and returns it to the server
•  Server decrypts the number using the shared

secret key.
•  If numbers match, the user is authenticated

  Prevents eavesdropping
  Does not provide non-repudiation
  If secret is compromised then user can

be impersonated

Copyright Ronald W. Ritchey 2008, All Rights Reserved
28

Public Key

  Uses public key cryptography to authentication
  User is issued a public/private key pair
  Server only knows the users public key
  To authentication

•  Server generates random number and sends to client
•  Client encrypts random with private key and sends to server.
•  Server decrypts with public key.
•  If numbers match then user is

authenticated
  If users private key is compromised the user can be

impersonated

Copyright Ronald W. Ritchey 2008, All Rights Reserved
29

Tokens and Smartcards

  Hardware assisted authentication
  Many types of varying sophistication

•  Challenge Response: Servers sends challenge which is entered into
token. Token computes password to return to server

•  Time-based challenge response: The current time is the challenge
value

•  Smartcards: Contain the users credentials
-  Can be dumb, I.e. gives up credentials to the requesting device

or
Can be smart, I.e. never reveals authentication data

Copyright Ronald W. Ritchey 2008, All Rights Reserved
30

Strong Authentication

  Something you know, something you have, something you are
  Uses more than one method to determine users identity

•  ATM card and PIN code

  Examples:
•  Private keys when stored on diskette are normally protected by a

passphrase
•  SecureID authentication requires the current value and a PIN code

for authentication

Copyright Ronald W. Ritchey 2008, All Rights Reserved
31

Examples: S/Key one-time pw

  Server knows user's secret pass phrase
  Server generates challenge, which includes a seed value
  User enters pass phrase at the client, which is combined with

the seed to generate the response
  The user’s pass phrase never crosses the network and is not

stored in either the client or server machines

Copyright Ronald W. Ritchey 2008, All Rights Reserved
32

Examples: SecureID

  Token-based with PIN
  Token generates a new passcode every minute (custom times

available)
  Authentication server uses the current time to determine

acceptable entries
  Multiple Form Factors

•  Keyfob
•  Credit Card
•  Smartcard

Copyright Ronald W. Ritchey 2008, All Rights Reserved
33

Authorization

  Once you have determined who a user is, you then must
decide what access to grant the user

  Can be simple or complex depending upon the needs of the
application

  Role Based Access Control (RBAC)
•  Assigns users into roles

-  This can be done statically or dynamically
•  Access granted to the role, not directly to the user
•  Some systems add additional intelligence such as membership

restrictions (i.e. a receiving clerk can not also be a purchasing agent)
  Coalition problem largely unsolved

•  How to authorize access based upon memberships that change over
time and may vary based upon the context of the request

Copyright Ronald W. Ritchey 2008, All Rights Reserved
34

Auditing

  Keeping a record of system activities is an essential
management activity

  Audit logs can be used for …
•  Debugging. When the system fails, the audit logs can show what the

system was doing. This is invaluable when trying to determine a
problems cause.

•  Accounting. Determine who used what resources when
•  Discover unusual activity

-  Unexpected activity may be a sign that your system is under attack
•  Damage limitation and recovery

Copyright Ronald W. Ritchey 2008, All Rights Reserved
35

Syslog

  The syslog service provides configurable event logging
•  kernel, daemons, and applications send logs to syslogd
•  syslogd decides where to deliver messages depending on

configuration
  /etc/syslog.conf used to configure. Entries have the following

format
•  facility.level destination

-  facility = subsystem sending the message
-  level = severity level of the message
-  destination = file, device, computer,

or user-name to send message to

Copyright Ronald W. Ritchey 2008, All Rights Reserved
36

Syslog samples

  Sample syslog.conf
*.err /dev/console!
*.err;daemon;auth.notice;mail.crit /var/adm/messages!

lpr.debug /var/adm/lpd-errs!

  Sample /var/adm/messages
Mar 21 10:36:04 host8 su: ‘su root’ failed for user1 on /dev/ttyp2!
Mar 21 10:36:08 host8 su: ‘su aaa’ succeeded for user1 on /dev/ttyp2!
Mar 24 15:01:44 host8 login: REPEATED LOGIN FAILURES ON console, user3!

Mar 24 15:12:02 host8 shutdown: reboot by user1!

Copyright Ronald W. Ritchey 2008, All Rights Reserved
37

Keystroke Logs

  Can be a very useful method for tracking system activity.
  C (csh), Korn (ksh) and Bourne-Again (bash) shells support a

command history mechanism
  Retains footprints of what commands the user has executed
  Commands are usually saved in /.history
  Use the history command to list recently

executed commands, e.g.,
•  # history
•  1 cd /etc/X11/
•  2 ls -l
•  3 cp XF86Config XF86Config.orig

Copyright Ronald W. Ritchey 2008, All Rights Reserved
38

What can you discover in logs?

  Accounting discrepancies (e.g., an 18-minute gap in a log file
that normally has several entries per minute)

  Excessive logon attempts
  Unexplained, new user accounts
  Unexplained, new files or unfamiliar file names
  Unexplained modifications to file lengths or/or dates,

especially in system executable files
  Unexplained attempts to write to system files or changes in

system files

Copyright Ronald W. Ritchey 2008, All Rights Reserved
39

Audit log protection

  A hacker’s first target after gaining access to a system is an
attempt to erase the evidence of the attack from system logs.

  Logs can be protected by
•  Having appropriate permissions set (though root usually can override

this)
•  Writing logs to write-once media (WORM drives)
•  Sending audit data to an external protected server
•  Printing log entries as they occur

Copyright Ronald W. Ritchey 2008, All Rights Reserved
40

Goal: Program in a Secure Context

Program
2: Protect against Buffer

Overflows
3: Design appropriately

6: Address language
specific issues

7: Address special issues

1: Input (validate all)
5: Output Information
Judiciously

4: Carefully Call-out to
Other Programs

Copyright Ronald W. Ritchey 2008, All Rights Reserved
41

Programming Securely
  Validate all input

•  From untrusted sources
•  Strings (special characters) and numbers (min and max)
•  All other data types (email, filenames, command, environment variables,

cookies, html form data, file content and file descriptors)
  Protect against Buffer (stack) Overflow

•  Avoid using risky functions (gets(), strcat(), etc)

  Design appropriately
•  Use safe defaults
•  Load configuration/initialization values safely
•  Fail safe, avoid race conditions, temp files in shared directories, etc.
•  Follow good security principles, prevent cross-site, etc.

  Carefully Call-out to other programs
•  Call only safe libraries, limit call parameters, encrypt sensitive info, etc

Copyright Ronald W. Ritchey 2008, All Rights Reserved
42

Programming Securely (cont’)

  Output Information Judiciously
•  Control data formatting

-  Printf (“whatever”); vs printf(“%s”, “whatever”);
•  Handle disk full and/or unresponsive recipient
•  Minimize feedback

-  Log failuires
-  Avoid sending program version numbers

  Address Language Specific Issues
•  C/C++: type must be strict, turn on all warning, use gcc
•  Perl: enable –w (warn) –T (taint) options
•  Python: check use of exec, eval, execfile, etc.
•  Shell: never use them for setuid/setid

  Address Special Issues/Topics
•  Random number use, password in clear, user authentication, use of

proprietary crypto modules

Copyright Ronald W. Ritchey 2008, All Rights Reserved
43

Agenda

  Syllabus
  Grading
  Discussion of information security
  Overview of information security terms

•  The CIA triangle
•  AAA

  Overview of the Unix security model

Copyright Ronald W. Ritchey 2008, All Rights Reserved
44

UNIX System Structure

  Was limited by hardware functionality
  Consists of two separate parts

•  System programs
•  The Kernel

-  Everything below the system-call interface and above the
physical hardware

-  Provides the file system, CPU scheduling, memory management,
etc.

Copyright Ronald W. Ritchey 2008, All Rights Reserved
45

UNIX System Structure

Terminal controllers
terminals

Device controllers
Disk and tapes

Memory controllers
Physical memory

Kernel interface to the hardware

Kernel Space

System-call interface to the Kernel

User Space
Shell and commands

Compilers and interpreters
System libraries

Copyright Ronald W. Ritchey 2008, All Rights Reserved
46

Kernel and User Space

  The kernel implements basic system functions and runs with
no security restrictions.

  Most programs execute in user space (on top of the kernel)
  We will concentrate on user space programs

Copyright Ronald W. Ritchey 2008, All Rights Reserved
47

UNIX Security Model

  User authenticated on logon
•  User ID associated with process
•  Default Group ID associated with process
•  Default Process listed in passwd file

  Group defined in /etc/groups
•  Set of users listed with each group definition
•  Users can be member of multiple groups

Copyright Ronald W. Ritchey 2008, All Rights Reserved
48

User privileges

  During login, the user is mapped to a user ID (UID) and group ID
(GID).

  Files (including programs) are owned by an individual UID, and
belong to a single GID.

  Each file has three groups of privileges, the owner, the group, and the
world

  Privileges are read, write, and execute
  UID 0 has special privileges

•  Can overrule most security checks
•  Used to administer the system
•  Referred to as root

Copyright Ronald W. Ritchey 2008, All Rights Reserved
49

Program privileges

  Programs normally execute at the privilege level of the user
that started them

  It is possible to mark a program so that the program executes
with the privilege level of the owner of the file
•  Set user ID (SUID)
•  Also possible to execute with the group assigned to the file. (SGID)
•  This is a major security concern

Copyright Ronald W. Ritchey 2008, All Rights Reserved
50

Interesting Process Attributes

  Real User ID (RUID) and real group ID (RGID)
  Effective User ID (EUID) and effective group ID (EGID)
  Saved UID and GID; used to support switching permissions on

and off
  Supplemental Groups; a list of groups (GIDs) in which this

user process has membership
  File system root; the location in the file system that the

process thinks is the root of the file system

Copyright Ronald W. Ritchey 2008, All Rights Reserved
51

Program Startup

  Depends on type of program
  Executable programs started with execve call

•  Replaces current executing process with image from file

  Scripts handled differently
•  1st line of script read to determine which interpreter should be used
•  Shell then executes interpreter and passes the name of the script file
•  Caused race condition in earlier versions of Unix

Copyright Ronald W. Ritchey 2008, All Rights Reserved
52

Processes

  For our purposes, programs and processes are identical
  Programs can create copies of themselves (using fork calls or

variants)
•  These copies inherit the privileges of their parent process

  Threads
•  Sometimes referred to as lightweight processes
•  Security issues similar to processes

Copyright Ronald W. Ritchey 2008, All Rights Reserved
53

File System Objects (FSO)

  In unix almost everything is a file
•  Files
•  Directories
•  Symbolic Links
•  Named Pipes
•  Sockets
•  Character special device files
•  Block special device files

Copyright Ronald W. Ritchey 2008, All Rights Reserved
54

FSO permissions

  Owning UID and GID
•  Only the owner or root can change the ownership / group membership

of a file
  Permission bits

•  Read, write, execute for each owner, group, and other
•  Files: as you would expect
•  Directories:

-  Read = ability to display
-  Write = add, remove, or rename files in dir
-  Execute = ability to enter directory
-  Sticky bit = limits write to add only

Copyright Ronald W. Ritchey 2008, All Rights Reserved
55

Interpreting Permissions

Symbolic notation Octal notation
r Read 4
w Write 2
x Execute 1
s Set user id (suid) 4000
s Set group id (sgid) 2000
t Set save text (sticky bit) 1000

Copyright Ronald W. Ritchey 2008, All Rights Reserved
56

Interpreting Permissions

ls -l myfile

 -rwxr-xr-- 1 jsmith user 6002 Sep 15 14:02 myfile

r = 4, w = 2, x = 1, - = 0 rwx = 4 +2+1 = 7

rwxrwxrwx r-xrw-rwx r--r--r--

 7 7 7 5 6 7 4 4 4

Copyright Ronald W. Ritchey 2008, All Rights Reserved
57

Interpreting Permissions

ls -l yourfile (suid/sgid)
-rwsr-sr-t 1 rjones group1 6002 Sep 15 14:02 yourfile

rws = file will execute with all the privileges of user rjones
r-s = file will execute with all the privileges of group1
r-t = indicates the sticky bit is set for file yourfile

 suid and sgid must be closely managed: any user
who is running a file with suid/sgid set acquires
the privileges of the file owner (dangerous
if the file is owned by root).

Copyright Ronald W. Ritchey 2008, All Rights Reserved
58

Interpreting Permissions: Dirs

ls -l yourdirectory (execute/sgid/sticky)
drwxrwsrwt 1 rjones group3 6002 Sep 15 16:22 yourdirectory
d = this is a directory
rwx = owner rjones has full access to the directory -- has read and

write privileges to the directory itself, and can access files within
it

rws = members of group3 have full access to the directory; new files
always belong to group group3 regardless of owner’s default
group

rwt = all users have full access to the directory, but can only delete files
that they own

Copyright Ronald W. Ritchey 2008, All Rights Reserved
59

Posix Style ACLs add richer set of permissions
POSIX ACL
Entry Name

Meaning Short Form Long Form

ACL_USER_OBJ The rights of the owner u:: user::

ACL_USER The rights of some specific
user, other than the owner

u:USERNAME: user:USERNAME:

ACL_GROUP_OBJ The rights of the group that
owns the file

g:: group::

ACL_GROUP The rights of some other
group that doesn’t own the
file

g:GROUPNAME: group::GROUPNAME:

ACL_OTHER The rights of anyone not
otherwise covered

o:: other::

ACL_MASK The maximum possible
rights for everyone, except
for the owner and OTHER

m:: mask:GROUPNAME:

* Not ratified but is implemented on some modern systems

Copyright Ronald W. Ritchey 2008, All Rights Reserved
60

When are access control attributes enforced?

  When file is opened but not during reads / writes
  Calls that check include:

•  open – open file
•  create – create new file
•  link – create a file that points to another file
•  unlink – remove the link
•  rename – rename the file
•  mknod – make a special file (such as a named pipe)
•  symlink – create a symbolic link
•  socket – create an endpoint for

communication

Copyright Ronald W. Ritchey 2008, All Rights Reserved
61

Interprocess Communication (IPC)

  Method to communicate between different processes
  Three types supported

•  Message Queues
•  Semaphores
•  Shared memory

  Permissions implemented in a similar fashion
to FSOs

Copyright Ronald W. Ritchey 2008, All Rights Reserved
62

Sockets

  Primarily used to
communicate across
a network

socket()

bind()

listen()

accept()

read()

write()

close()

socket()

connect()

write()

read()

close()

Process
request

Data (reply)

Data (request)

Connection

establishment

(TCP 3-way handshake)

SERVER CLIENT

Copyright Ronald W. Ritchey 2008, All Rights Reserved
63

Domain sockets

  Connect to sockets on the same machine
  Alternative to named pipes but has security advantages
  Each connection request results in a new communication

channel
  Must use socket calls to access

Copyright Ronald W. Ritchey 2008, All Rights Reserved
64

Quotas and Limits

  Useful for preventing denial of service attacks
  File system quotas

•  Can limit the total blocks and the total number of files
•  Per user and/or per group
•  Soft limit (can be temporarily exceeded)
•  Hard limit (actual maximum)

  Process resource limits
•  File sizes
•  Number of child processes
•  Number of open files
•  Etc.

Copyright Ronald W. Ritchey 2008, All Rights Reserved
65

Popular security extensions

  Pluggable Authentication Modules (PAM)
•  Permits run-time configuration of authentication methods

-  Passwords
-  Smartcards

•  Will be covered in detail later

  tcpwrappers
•  Used to control access to sockets
•  Configured in /etc/hosts.allow, /etc/host.deny

66
Copyright Ronald W. Ritchey 2008, All Rights Reserved

Next Thursday’s Class
How hackers discover and take
advantage of security flaws

Copyright Ronald W. Ritchey 2008, All Rights Reserved
67

Questions?

